Modeling EDFA Gain: Approaches and Challenges

Author:

Liu YichenORCID,Liu Xiaomin,Liu Lei,Zhang Yihao,Cai Meng,Yi Lilin,Hu Weisheng,Zhuge Qunbi

Abstract

With the rapid development of virtual/augmented reality and cloud services, the capacity demand for optical communication systems is ever-increasing. To further increase system capacity, current researches focus on efficient and reliable system management, in which the transmission performance should be accurately estimated. The wavelength-dependent gain effects of erbium-doped fiber amplifiers (EDFAs) have a great impact on transmission performance, and therefore a precise EDFA gain model is required. In this paper, we firstly summarize the underlying principles and structures of EDFA, and introduce the gain performance and challenges in modeling. Then, we review the EDFA gain modeling methods. We categorize these researches into analytical modeling methods and machine learning (ML)-based modeling methods, and discuss their feasibilities and performances. In addition, we discuss the remaining problems for applying the models in a system and the possible directions for future investigations.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference38 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3