Broadband Mid-Infrared Frequency Comb in Integrated Chalcogenide Microresonator

Author:

Lu Siqi1,Lin Guosheng1,Xia Di1,Wang Zifu1,Luo Liyang1,Li Zhaohui12,Zhang Bin1

Affiliation:

1. Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electrical and Information Technology, Sun Yat-sen University, Guangzhou 510275, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China

Abstract

Mid-infrared (MIR) frequency combs based on integrated photonic microresonators (micro combs) have attracted increasing attention in chip-scale spectroscopy due to their high spectral resolution and broadband wavelength coverage. However, up to date, there are no perfect solutions for the effective generation of MIR micro combs because of the lack of proper MIR materials as the core and cladding of the integrated microresonators, thereby hindering accurate and flexible dispersion engineering. Here, we have firstly demonstrated a MIR micro comb generation covering from 6.94 μm to 12.04 μm based on a sandwich-integrated all-ChG microresonator composed of GeAsTeSe and GeSbSe as the core and GeSbS as cladding. The novel sandwich microresonator is proposed to achieve a symmetrically uniform distribution of the mode field in the microresonator core, precise dispersion engineering, and low optical loss, which features a wide transmission window, high Kerr nonlinearity, and hybrid-fabrication flexibility on a silicon wafer. A MIR Kerr frequency comb with a 5.1 μm bandwidth has been numerically demonstrated, assisted by dispersive waves. Additionally, a feasible fabrication scheme is proposed to realize the on-demand ChG microresonators. These demonstrations characterize the advantages of integrated ChG photonic devices in MIR nonlinear photonics and their potential applications in MIR spectroscopy.

Funder

Broadband Communication and New Network of the Ministry of Science and Technology

National Key R&D Program of China

National Science Foundation of China

Natural Science Foundation of Guangdong Province for Distinguished Young Scholars

FundamentalResearch Funds for the Central Universities, Sun Yat-sen University

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3