Progress in Hybrid Plasma Wakefield Acceleration

Author:

Hidding Bernhard12ORCID,Assmann Ralph34ORCID,Bussmann Michael56ORCID,Campbell David12ORCID,Chang Yen-Yu5,Corde Sébastien7ORCID,Cabadağ Jurjen Couperus5ORCID,Debus Alexander5ORCID,Döpp Andreas8ORCID,Gilljohann Max7,Götzfried J.8,Foerster F. Moritz8ORCID,Haberstroh Florian8ORCID,Habib Fahim12ORCID,Heinemann Thomas12ORCID,Hollatz Dominik910,Irman Arie5ORCID,Kaluza Malte910,Karsch Stefan811ORCID,Kononenko Olena7ORCID,Knetsch Alexander7ORCID,Kurz Thomas5ORCID,Kuschel Stephan12,Köhler Alexander5ORCID,Ossa Alberto Martinez de la3ORCID,Nutter Alastair125ORCID,Pausch Richard5ORCID,Raj Gaurav7,Schramm Ulrich5ORCID,Schöbel Susanne5ORCID,Seidel Andreas910,Steiniger Klaus5ORCID,Ufer Patrick5ORCID,Yeung Mark910,Zarini Omid5,Zepf Matt910

Affiliation:

1. Scottish Universities Physics Alliance SUPA, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, UK

2. The Cockcroft Institute, Keckwick Ln, Daresbury, Warrington WA4 4AD, UK

3. Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

4. Laboratori Nazionali di Frascati, 00044 Frascati, Italy

5. Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany

6. Center for Advanced Systems Understanding CASUS, 02826 Görlitz, Germany

7. LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France

8. Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany

9. Institute of Optics and Quantum Electronics, Friedrich-Schiller-University of Jena, Max-Wien-Platz 1, 07743 Jena, Germany

10. Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany

11. Max Planck Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

12. Center for Free Electron Science, CFEL, Luruper Chaussee 149, 22761 Hamburg, Germany

Abstract

Plasma wakefield accelerators can be driven either by intense laser pulses (LWFA) or by intense particle beams (PWFA). A third approach that combines the complementary advantages of both types of plasma wakefield accelerator has been established with increasing success over the last decade and is called hybrid LWFA→PWFA. Essentially, a compact LWFA is exploited to produce an energetic, high-current electron beam as a driver for a subsequent PWFA stage, which, in turn, is exploited for phase-constant, inherently laser-synchronized, quasi-static acceleration over extended acceleration lengths. The sum is greater than its parts: the approach not only provides a compact, cost-effective alternative to linac-driven PWFA for exploitation of PWFA and its advantages for acceleration and high-brightness beam generation, but extends the parameter range accessible for PWFA and, through the added benefit of co-location of inherently synchronized laser pulses, enables high-precision pump/probing, injection, seeding and unique experimental constellations, e.g., for beam coordination and collision experiments. We report on the accelerating progress of the approach achieved in a series of collaborative experiments and discuss future prospects and potential impact.

Funder

Helmholtz association

Center of Advanced Systems Understanding

European Research Council

Cluster of Excellence Munich–Centre for Advanced Photonics

Euratom research and training program

STFC

DOE

Shaheen

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference60 articles.

1. Collective and coherent methods of particle acceleration;Lawson;Part. Accel.,1972

2. Laser Electron-Accelerator;Tajima;Phys. Rev. Lett.,1979

3. Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma;Chen;Phys. Rev. Lett.,1985

4. Compression of amplified chirped optical pulses;Strickland;Opt. Commun.,1985

5. Principles and applications of compact laser-plasma accelerators;Malka;Nat. Phys.,2008

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3