Controlling Plasmon Resonance of Gold and Silver Nanoparticle Arrays with Help of Liquid Crystal

Author:

Yakovkin Ivan1ORCID,Reshetnyak Victor12ORCID

Affiliation:

1. Physics Faculty, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine

2. School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

Abstract

The tunability of plasmonic resonances in gold and silver nanosphere arrays on a glass substrate, embedded in a liquid crystal matrix, was explored. The calculations involving the finite element method revealed that the optical properties of these arrays can be modulated by reorienting the liquid crystal. When the liquid crystal director was reoriented between planar and homeotropic configurations in the plane containing the incident wave polarization vector, the plasmonic resonance wavelength shifted within an approximately 100 nm range. A reduced shift of about 40 nm was observed when the reorientation occurred in the plane perpendicular to the polarization. Both metal nanosphere arrays showed notable near-field amplification. Gold achieved up to 18 times the amplification of the incident wave electric field, while silver reached 16 times but showed a remarkable 40 times amplification at the inter-band transition resonance wavelength. This research underscores the potential of using liquid crystal reorientation for controlling the plasmonic lattice resonance in metal nanosphere arrays, opening up new possibilities for adaptable plasmonic devices.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3