Ultracompact Deep Neural Network for Ultrafast Optical Property Extraction in Spatial Frequency Domain Imaging (SFDI)

Author:

Song Bowen,Jia Wenchao,Zhao YanyuORCID,Huang Hongshi,Fan Yubo

Abstract

Spatial frequency domain imaging (SFDI) is a powerful, label-free imaging technique capable of the wide-field quantitative mapping of tissue optical properties and, subsequently, chromophore concentrations. While SFDI hardware acquisition methods have advanced towards video-rate, the inverse problem (i.e., the mapping of acquired diffuse reflectance to optical properties) has remained a bottleneck for real-time data processing and visualization. Deep learning methods are adept at fitting nonlinear patterns, and may be ideal for rapidly solving the SFDI inverse problem. While current deep neural networks (DNN) are growing increasingly larger and more complex (e.g., with millions of parameters or more), our study shows that it can also be beneficial to move in the other direction, i.e., make DNNs that are smaller and simpler. Here, we propose an ultracompact, two-layer, fully connected DNN structure (each layer with four and two neurons, respectively) for ultrafast optical property extractions, which is 30×–600× faster than current methods with a similar or improved accuracy, allowing for an inversion time of 5.5 ms for 696 × 520 pixels. We further demonstrated the proposed inverse model in numerical simulations, and comprehensive phantom characterization, as well as offering in vivo measurements of dynamic physiological processes. We further demonstrated that the computation time could achieve another 200× improvement with a GPU device. This deep learning structure will help to enable fast and accurate real-time SFDI measurements, which are crucial for pre-clinical, clinical, and industrial applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3