A Systematic Summary and Comparison of Scalar Diffraction Theories for Structured Light Beams

Author:

Wu Fuping1,Luo Yi1,Cui Zhiwei12ORCID

Affiliation:

1. School of Physics, Xidian University, Xi’an 710071, China

2. Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China

Abstract

Structured light beams have recently attracted enormous research interest for their unique properties and potential applications in optical communications, imaging, sensing, etc. Since most of these applications involve the propagation of structured light beams, which is accompanied by the phenomenon of diffraction, it is very necessary to employ diffraction theories to analyze the obstacle effects on structured light beams during propagation. The aim of this work is to provide a systematic summary and comparison of the scalar diffraction theories for structured light beams. We first present the scalar fields of typical structured light beams in the source plane, including the fundamental Gaussian beams, higher-order Hermite–Gaussian beams, Laguerre–Gaussian vortex beams, non-diffracting Bessel beams, and self-accelerating Airy beams. Then, we summarize and compare the main scalar diffraction theories of structured light beams, including the Fresnel diffraction integral, Collins formula, angular spectrum representation, and Rayleigh–Sommerfeld diffraction integral. Finally, based on these theories, we derive in detail the analytical propagation expressions of typical structured light beams under different conditions. In addition, the propagation of typical structured light beams is simulated. We hope this work can be helpful for the efficient study of the propagation of structured light beams.

Funder

Natural Science Basic Research Program of Shaanxi

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Approach to Direct 3D Imaging with Coherent Light;Journal of Russian Laser Research;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3