A Single–Multi-Path Combinatorial RMSA Algorithm with Least Resource Consumption in Semi-Filterless Optical Networks

Author:

Yuan Junling1,Xie Yanyan1ORCID,Wang Suhua1,Li Xuhong2,Zhang Qikun1,Zhang Jing1

Affiliation:

1. School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450066, China

2. School of Science, Zhongyuan University of Technology, Zhengzhou 450007, China

Abstract

Filterless optical networks (FONs) have become a cost-effective solution for optical network deployment due to their low-cost characteristics. However, eliminating active switching elements causes signals to propagate over unintended links, wasting spectral resources. Therefore, semi-filterless optical networks (Semi-FONs) have become a more cost-effective solution. This paper mainly studies the routing, modulation, and spectrum assignment (RMSA) problem in semi-filterless optical networks. It proposes a single–multi-path combination (LR-SMPC) RMSA algorithm with the least resource consumption. The algorithm first obtains the K shortest paths that satisfy the conditions according to the K short path (KSP) algorithm and re-orders the paths according to the resource consumption path re-ordering strategy, selecting the three paths that consume the least resources as the set of candidate paths. Then, based on the single–multi-path combination scheme of the set of candidate paths, the resource consumption of each scheme and the maximum number of available spectrum blocks for each path is calculated, from which the single path or multi-path with the least resource consumption is selected to serve the request. We perform simulation experiments on two network topologies using Poisson traffic models and compare them with existing single-path algorithms (S-P), fixed spectrum assignment granularity algorithms (g = 1), and adaptation spectrum assignment algorithms (g adaptation) to evaluate the performance of the proposed algorithm. The simulation results show that the proposed algorithm exhibits better performance in terms of both blocking rate and spectrum utilization.

Funder

National Natural Science Foundation of China

Key Scientific and Technological Research Projects in Henan Province

Natural Science Foundation of Henan

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3