Online Denoising Single-Pixel Imaging Using Filtered Patterns

Author:

Yang Zhaohua1ORCID,Chen Xiang2,Zhao Zhihao1,Wu Lingan3,Yu Yuanjin45ORCID

Affiliation:

1. School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China

2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

3. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

4. School of Automation, MIIT Key Laboratory of Complex-Field Intelligent Sensing, Beijing Institute of Technology, Beijing 100081, China

5. Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China

Abstract

Noise is inevitable in single-pixel imaging (SPI). Although post-processing algorithms can significantly improve image quality, they introduce additional processing time. To address this issue, we propose an online denoising single-pixel imaging scheme at the sampling stage, which uses the filter to optimize the illumination modulation patterns. The image is retrieved through the second-order correlation between the modulation patterns and the intensities detected by the single-pixel detector. Through simulations and experiments, we analyzed the impact of sampling rate, noise intensity, and filter template on the reconstructed images of both binary and grayscale objects. The results demonstrate that the denoising effect is comparable to the imaging-first followed by post-filtering procedures, but the post-processing time is reduced for the same image quality. This method offers a new way for rapid denoising in SPI, and it should be particularly advantageous in applications where time-saving is of paramount importance, such as in image-free large target classification.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3