Measurement of the Attenuation Coefficient in Fresh Water Using the Adjacent Frame Difference Method

Author:

Yang GangORCID,Tian Zhaoshuo,Bi Zongjie,Cui Zihao,Sun Fenghao,Liu Qingcao

Abstract

The attenuation coefficient of a water body is one of the important factors for describing its features. However, its remote measurement in real time is still a challenge. In this paper, we demonstrated a novel method to realize real-time remote measurements of the attenuation coefficient of fresh water using flash imaging lidar based on the adjacent frame difference (AFD) method and a water body backscattering model. In general, we firstly investigated the relationship between the backscattering intensity and the attenuation coefficient based on the backscattering model of the water body. Then, the backscattering intensity at the front and back edges of the range-gate obtained by the AFD method was brought into this relationship to obtain the attenuation coefficient. Experiments on the measurements of the average attenuation coefficient of the 532 nm laser in fresh water at 3–8 m were further carried out using our self-developed flash lidar with the AFD method. The acquired water attenuation coefficients were 0.1334±0.02 and 0.1382±0.03 with a delay step time of 1 ns and 2 ns in the AFD method, respectively. We compared these values to the one achieved following the conventional Beer–Lambert law (0.1330±0.02), and they matched well with each other. These results fully illustrated the feasibility and reliability of the proposed method for measuring the attenuation coefficient of water bodies.

Funder

China National Key R&D Program

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference27 articles.

1. Real-Time Coastal Observing Systems for Marine Ecosystem Dynamics and Harmful Algal Blooms: Theory, Instrumentation and Modelling;Babin,2008

2. Water quality assessment using a portable UV optical absorbance nitrate sensor with a scintillator and smartphone camera;Ingles;Water SA,2021

3. Optical fiber sensing for marine environment and marine structural health monitoring: A review

4. Light attenuation in waters of the Oder River and Pomeranian Bay;Gasowski;Proceedings of the 13th Polish-Czech-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics. International Society for Optics and Photonics,2002

5. Coastal thin layer dynamics: Consequences to biology and optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3