Modeling of Ultra-Long Span Bidirectional Raman Transmission Link Using Three-Segment Hybrid Fiber Core Structure

Author:

Syuaib IbrahimORCID,Asvial Muhamad,Rahardjo Eko Tjipto

Abstract

Ultra-long span unrepeatered systems using distributed Raman amplification are cost-effective solutions for bridging moderate transmission distances. However, there are two major limiting factors: nonlinear Kerr effect-induced nonlinear signal distortion and optical signal-to-noise ratio degradation due to spontaneous Raman noise. In this report, we proposed a model of three-segment hybrid fiber effective core area structure and developed a model covering: (1) generalized mathematical formulations, (2) analysis of three-segment Raman amplified link, and (3) simulation model of data transmission. The proposed model showed an improvement of the Raman gain profile, a reduction of the negative impact of the nonlinear Kerr effect, and an enhancement of the optical signal-to-noise ratio. A numerical simulation of the transmission performance of the three-segment hybrid structure was compared to conventional single-segment single fiber core structure on 80 Gb/s differential quadrature phase-shift keying (DQPSK) modulated data signals over a propagation distance of 390 km. The required optical signal-to-noise ratio was reduced by 2.71 dB to achieve the target error rate without using forward error correction. The numerical model and simulation of various data rates up to 100 Gb/s consistently showed that an improvement in transmission performance could be achieved by using three-segment hybrid fiber effective core area structure.

Publisher

MDPI AG

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3