High-Peak-Power Long-Wave Infrared Lasers with CO2 Amplifiers

Author:

Polyanskiy MikhailORCID,Pogorelsky IgorORCID,Babzien Marcus,Kupfer RotemORCID,Vafaei-Najafabadi NavidORCID,Palmer MarkORCID

Abstract

Long-wave infrared (LWIR) picosecond pulses with multi-terawatt peak power have recently become available for advanced high-energy physics and material research. Multi-joule pulse energy is achieved in an LWIR laser system via amplification of a microjoule seed pulse with high-pressure, mixed-isotope CO2 amplifiers. A chirped-pulse amplification (CPA) scheme is employed in such a laser to reduce the nonlinear interaction between the optical field and the transmissive elements of the system. Presently, a research and development effort is underway towards an even higher LWIR peak power that is required, for instance, for promising particle acceleration schemes. The required boost of the peak power can be achieved by reducing the pulse duration to fractions of a picosecond. For this purpose, the possibility of reducing the gain narrowing in the laser amplifiers and post-compression techniques are being studied. Another direction in research is aimed at the increased throughput (i.e., repetition rate), efficiency, and reliability of LWIR laser systems. The transition from a traditional electric-discharge pumping to an optical pumping scheme for CO2 amplifiers is expected to improve the robustness of high-peak-power LWIR lasers, making them suitable for broad implementation in scientific laboratory, industrial, and clinical environments.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3