Abstract
Stray light, such as sunlight, moonlight, and earth-atmosphere light, can bring about light spots in backgrounds, and it affects the star detection of star sensors. To overcome this problem, this paper proposes a star detection algorithm (CMLCM) with multidirectional local contrast based on curvature. It regards the star image as a spatial surface and analyzes the difference in the curvature between the star and the background. It uses a facet model to represent the curvature and calculate the second-order derivatives in four directions. According to the characteristic of the star and the complex background, it enhances the target and suppresses the complex background by a new calculation method of a local contrast map. Finally, it divides the local contrast map into multiple 256 × 256 sub-regions for a more effective threshold segmentation. The experimental results indicated that the CMLCM algorithm could effectively detect a large number of accurate stars under stray light interference, and the detection rate was higher than other compared algorithms with a lower false alarm rate.
Funder
National Key Research and Development Program of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献