Grant Report on the Transcranial near Infrared Radiation and Cerebral Blood Flow in Depression (TRIADE) Study

Author:

Iosifescu Dan V.ORCID,Collins Katherine A.ORCID,Hurtado-Puerto Aura,Irvin Molly K.,Clancy Julie A.ORCID,Sparpana Allison M.,Sullivan Elizabeth F.,Parincu Zamfira,Ratai Eva-Maria,Funes Christopher J.,Weerasekera AkilaORCID,Dmochowski Jacek P.,Cassano PaoloORCID

Abstract

We report on the rationale and design of an ongoing National Institute of Mental Health (NIMH) sponsored R61-R33 project in major depressive disorder (MDD). Current treatments for MDD have significant limitations in efficacy and side effect burden. There is a critical need for device-based treatments in MDD that are efficacious, well-tolerated, and easy to use. This project focuses on the adjunctive use of the transcranial photobiomodulation (tPBM) with near-infrared (NIR) light for the treatment of MDD. tPBM with NIR light penetrates robustly into the cerebral cortex, stimulating the mitochondrial respiratory chain, and also significantly increases cerebral blood flow (CBF). In the R61 phase, we will conduct target engagement studies to demonstrate dose-dependent effects of tPBM on the prefrontal cortex (PFC) CBF, using the increase in fMRI blood-oxygenation-level-dependent (BOLD) signal levels as our Go/No-go target engagement biomarker. In the R33 phase, we will conduct a randomized clinical trial of tPBM vs. sham in MDD to establish the target engagement and evaluate the association between changes in the biomarker (BOLD signal) and changes in clinical symptoms, while also collecting important information on antidepressant effects, safety, and tolerability. The study will be done in parallel at New York University/the Nathan Kline Institute (NYU/NKI) and at Massachusetts General Hospital (MGH). The importance of this study is threefold: 1. it targets MDD, a leading cause of disability worldwide, which lacks adequate treatments; 2. it evaluates tPBM, which has a well-established safety profile and has the potential to be safe in at-home administration; and 3. it uses fMRI BOLD changes as a target engagement biomarker. If effects are confirmed, the present study will both support short-term clinical development of an easy to scale device for the treatment of MDD, while also validating a biomarker for the development of future, novel modulation strategies.

Funder

US National Institute of Mental Health

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3