Investigation of Optical Cavity Dynamics with Raman and Ytterbium-Doped Gain Media Integration

Author:

Mejia-Beltran Efrain1ORCID,Ballesteros-Llanos Oscar J.1

Affiliation:

1. Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, León 37150, Mexico

Abstract

This study delves into a comprehensive examination of an optical cavity system that integrates Raman and Yb-doped gain media, with a focus on understanding their interactions. The research implies a characterization of each gain medium within the cavity while subjecting them to diverse co-pumping conditions with the other. When the Raman-lasing cavity is co-pumped by exciting the Yb-doped section, the resulting composite laser exhibits significant threshold reductions and there is an optimal co-pumping regime that enhances energy transfer from pump to Stokes. As for the complementary cavity, where the Yb-doped gain is influenced by the co-pumped Raman gain, at moderate pump powers a light-controlling-light behavior phenomenon arises. Within this regime, the 1064 nm signal suppresses the Yb-generated 1115 nm signal, suggesting potential applications in intracavity optical modulation. For higher pump levels, a cooperative effect emerges whereby both lasers mutually enhance each other. Minor variations in the primary 974 nm pump power, even by just a few milliwatts, result in significant capabilities for switching or modulating the Stokes signal. Under these conditions of mutual enhancement, the hybrid optical system validates notable improvements regarding energy transfer efficiency and threshold reduction. This research provides valuable insights into the intricate dynamics of optical cavity systems and reveals promising avenues for applications in advanced optical modulation technologies.

Funder

CONACYT-Mexico

Centro de Investigaciones en Optica, A.C.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3