Experimental Direct Measurement of the Relative Entropy of Coherence

Author:

Huang Xufeng1,Yuan Yuan1ORCID,Niu Yueping123,Gong Shangqing123

Affiliation:

1. School of Physics, East China University of Science and Technology, Shanghai 200237, China

2. Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai 200237, China

3. Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China

Abstract

Quantum coherence is the most distinguished feature of quantum mechanics, which characterizes the superposition properties of quantum states. It plays a critical role in various fields, ranging from quantum information technology to quantum biology. Although various coherence quantifiers have been proposed since the resource theory of coherence was established, there are a lack of experimental methods to estimate them efficiently, which restricts the applications of coherence. Relative entropy of coherence is one of the main quantifiers of coherence, and is frequently used in quantum information science. Such nonlinear properties of quantum states are usually calculated from full descriptions of the quantum state, although they are not related to all parameters that specify the state. Here, we experimentally measure the relative entropy of coherence for the arbitrary qubit states directly in the photonic system without using standard state tomography. In the experiment, we directly measure the von Neumann entropy of the quantum states through interference, thus obtaining the relative entropy of coherence, and finding that the experimental results are in good agreement with the theory. Our work provides a nice alternative experimental scheme for measuring the relative entropy of coherence.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3