Photoinduced Electron Transfer and Aggregation-Induced Emission in 1,8-Naphthalimide Probes as a Platform for Detection of Acid/Base Vapors

Author:

Georgiev Nikolai I.ORCID,Bakov Ventsislav V.ORCID,Bojinov Vladimir B.ORCID

Abstract

In the last few decades, photoinduced electron transfer (PET) based on “fluorophore-spacer-receptor” format became the most popular approach in the design of fluorescent sensing probes. As a result, a variety of architectures for detection of different chemical species has been synthesized, and PET has been well-studied in liquid solutions. The extension of the principles of molecular sensors from liquid solution onto solid support is currently a major task, which opens up new directions for practical applications. An approach for the design of solid state fluorescence-sensing materials could be based on aggregation-induced emission (AIE). That is why, herein, we focused our attention on the investigation of some 1,8-naphthalimides designed on classical “fluorophore-spacer-receptor” to serve as fluorescence-sensing materials in solid state via simultaneous PET and AIE. The effects of different substituents were investigated, and it was found that the examined compounds with well-pronounced AIE could be used as an efficient platform for rapid detection of pH and acid/base vapors in solid state.

Funder

Bulgarian Science Fund

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3