A Simulation Study of the Dynamical Control of Optical Skyrmion Lattices through the Superposition of Optical Vortex Beams

Author:

Tang Gao1ORCID,Bai Chunyan2,Tang Tianchen1,Peng Jiansheng3ORCID,Zhuang Songlin14,Zhang Dawei14

Affiliation:

1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai 200093, China

3. School of Artificial Intelligence and Manufacturing, Hechi University, No. 42 Longjiang Road, Yizhou District, Hechi 546300, China

4. Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai 200093, China

Abstract

Optical skyrmion lattices play an important role in photonic system design and have potential applications in optical transmission and storage. In this study, we propose a novel metasurface approach to calculating the dependence of the multi-beam interference principle and the angular momentum action in the spin–orbit interaction. The metasurface consists of nanopore structures, which are used to generate an optical skyrmion lattice. The superposition of optical vortex beams with circular polarization states is used to evaluate the evolution of the shape of the topological domain walls of the hexagonal skyrmion lattice. Our results show that the distribution of the skyrmion spin vector can be controlled by changing the lattice arrangement from triangular to hexagonal shapes. The distribution of skyrmion number at the microscale is further calculated. Our work has significant implications for the regulation of the shape of topological domain walls of skyrmion lattices, with potential applications in polarization sensing, nanopositioning, and super-resolution microimaging.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3