Abstract
We proposed an ultra-sensitive refractive index sensor by using indium-doped cadmium oxide as a plasmonic material operating in near-infrared based on Fano resonance. The proposed sensor has a hybrid multilayer waveguide structure that supports both a long-range surface plasmon polariton (LRSPP) mode and a dielectric waveguide (DWG) mode. The design strategy of the structure parameters of the inner layers is elaborated in detail through the numerical analysis of the two modes. By suitably tailoring the thickness of the coupling layer, a strong mode coupling between the two modes could be achieved, leading to a sharp asymmetric Fano resonance. With the designed optimal physical parameters, our proposed sensor could achieve a maximum intensity sensitivity of 19,909 RIU−1, a 193-fold enhancement than that of a conventional long-range SPR (LRSPR) based scheme. The proposed design can be a promising platform for biochemical sensing in the near-infrared region.
Funder
NSERC; Wilfrid Laurier University
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献