Abstract
Aiming at the problem that it is difficult for the conventional Shack–Hartmann wavefront sensor to achieve high-precision wavefront reconstruction with low spatial sampling, a kind of Shack–Hartmann wavefront sensing technology based on four-quadrant binary phase modulation is proposed in this paper. By introducing four-quadrant binary phase modulation into each subaperture, the technology is able to use an optimization algorithm to reconstruct wavefronts with high precision. The feasibility and effectiveness of this method are verified at extreme low spatial frequency by a series of numerical simulations, which show that the proposed method can reliably reconstruct wavefronts with high accuracy with rather low spatial sampling. In addition, the experiment demonstrates that with a 2 × 2 microlens array, the four-quadrant binary phase-modulated Shack–Hartmann wavefront sensor is able to achieve approximately 54% reduction in wavefront reconstitution error over the conventional Shack–Hartmann wavefront sensor.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
Outstanding Member of Youth Innovation Promotion Association CAS
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献