TPDNet: Texture-Guided Phase-to-DEPTH Networks to Repair Shadow-Induced Errors for Fringe Projection Profilometry

Author:

Li Jiaqiong1,Li Beiwen1ORCID

Affiliation:

1. Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA

Abstract

This paper proposes a phase-to-depth deep learning model to repair shadow-induced errors for fringe projection profilometry (FPP). The model comprises two hourglass branches that extract information from texture images and phase maps and fuses the information from the two branches by concatenation and weights. The input of the proposed model contains texture images, masks, and unwrapped phase maps, and the ground truth is the depth map from CAD models. A loss function was chosen to consider image details and structural similarity. The training data contain 1200 samples in the verified virtual FPP system. After training, we conduct experiments on the virtual and real-world scanning data, and the results support the model’s effectiveness. The mean absolute error and the root mean squared error are 1.0279 mm and 1.1898 mm on the validation dataset. In addition, we analyze the influence of ambient light intensity on the model’s performance. Low ambient light limits the model’s performance as the model cannot extract valid information from the completely dark shadow regions in texture images. The contribution of each branch network is also investigated. Features from the texture-dominant branch are leveraged as guidance to remedy shadow-induced errors. Information from the phase-dominant branch network makes accurate predictions for the whole object. Our model provides a good reference for repairing shadow-induced errors in the FPP system.

Funder

National Science Foundation Directorate for Engineering

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3