Thermal Lensing and Laser-Induced Damage in Special Pure Chalcogenide Ge35As10S55 and Ge20As22Se58 Glasses under Quasi-CW Fiber Laser Irradiation at 1908 nm

Author:

Antipov Oleg1ORCID,Dobrynin Anton12,Getmanovskiy Yuri13,Karaksina Ella4,Shiryaev Vladimir4ORCID,Sukhanov Maksim4,Kotereva Tatiana4

Affiliation:

1. Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia

2. Radiophysics Department, Nizhny Novgorod State University, 603022 Nizhny Novgorod, Russia

3. Department of Material Sciences and Technologies, Nizhny Novgorod State Technical University, 603950 Nizhny Novgorod, Russia

4. Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences, 603951 Nizhny Novgorod, Russia

Abstract

Special pure chalcogenide glass is the material of choice for many mid-infrared optical fibers and fiber lasers. In this paper, the thermo-optical lensing and laser-induced damage were studied in Ge35As10S55 and Ge20As22Se58 glasses and compared with the well-studied As2S3 glass. The thermal Z-scan technique with the quasi-CW Tm-doped fiber laser at 1908 nm was applied to study thermal lensing in chalcogenide glass. The laser-induced damage of various chalcogenide glasses was determined using the one-on-one procedure. The thermal nonlinear refractive index of the Ge35As10S55 and Ge20As22Se58 glasses was found to be lower than that of the As2S3 glass. The laser-induced damage threshold of the Ge20As22Se58 glass was determined to be higher than that of the Ge35As10S55 glass. The difference in the thermal damage threshold of the Ge35As10S55 and Ge20As22Se58 glasses and their lower value in comparison with the As2S3 glass were explained by a deviation from the stoichiometry of glass compositions and their tendency to crystallize.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3