Abstract
Fringe projection profilometry (FPP) has been broadly employed for three-dimensional shape measurements. However, the measurement accuracy suffers from gamma nonlinearity. This paper proposes an intensity-averaged double three-step phase-shifting (IDTP) algorithm making use of color-encoded fringe projection, which does not require complex calibration processes or extra fringe patterns. Specifically, two phase maps with π/2 phase shift are encoded into the red and blue channels of color fringe patterns. The average fringe patterns of the red and blue channels are approximately in sinusoidal waveform with little harmonics, thus can be directly used for accurate phase recovery. Additionally, an adaptive weight is also estimated for average operation to suppress the effect of color crosstalk. Both simulations and experiments demonstrate that the proposed IDTP algorithm can effectively eliminate nonlinear phase errors.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Anhui Province
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献