Enhancing Dynamic Performance in K-Rb-21Ne Co-Magnetometers through Atomic Density Optimization

Author:

Yang Lv1ORCID,Pang Haoying12,Quan Wei12

Affiliation:

1. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China

2. Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing 100191, China

Abstract

The K-Rb-21Ne co-magnetometer exhibits poorer dynamic performance due to the larger equivalent magnetic field generated by alkali metal atoms. In this study, the impact of the atomic number density of alkali metal atoms and noble gas atoms in the cell on the dynamic performance of the atomic ensemble is investigated quantitatively. Relationships between the slow-decay term in the transient response attenuation of the Spin-Exchange Relaxation-Free (SERF) co-magnetometer to interference magnetic fields and the number densities of noble gas atoms as well as alkali metal atoms are established. Based on the established model, the relationship between the number density of 21Ne atoms and dynamic performance is investigated using cells with five different noble gas pressures. Then, we investigate the impact of the number density of alkali metal atoms using a cell with a pressure of 2.1 atm at different temperatures. The results indicate that, as the number density of alkali metal atoms or noble gas atoms in the cell increases, the dynamic performance of the system improves, which provides a theoretical basis for the design of cell parameters for SERF co-magnetometers.

Funder

National Science Fund for Distinguished Young Scholars China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3