The Design of a Photonic Crystal Fiber for Hydrogen Cyanide Gas Detection

Author:

Pourfathi Fard Abdolreza1,Makouei Somayeh1ORCID,Danishvar Morad2ORCID,Danishvar Sebelan2ORCID

Affiliation:

1. Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51664, Iran

2. College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK

Abstract

Hydrogen cyanide gas is a dangerous and fatal gas that is one of the causes of air pollution in the environment. A small percentage of this gas causes poisoning and eventually death. In this paper, a new PCF is designed that offers high sensitivity and low confinement loss in the absorption wavelength of hydrogen cyanide gas. The proposed structure consists of circular layers that are located around the core, which is also composed of circular microstructures. The finite element method (FEM) is used to simulate the results. According to the results, the PCF gives a high relative sensitivity of 65.13% and a low confinement loss of 1.5 × 10−3 dB/m at a wavelength of 1.533 µm. The impact of increasing the concentration of hydrogen cyanide gas on the relative sensitivity and confinement loss is investigated. The high sensitivity and low confinement losses of the designed PCF show that this optical structure could be a good candidate for the detection of this gas in industrial and medical environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3