Application of Reflectance Indices for Remote Sensing of Plants and Revealing Actions of Stressors

Author:

Kior Anastasiia,Sukhov VladimirORCID,Sukhova EkaterinaORCID

Abstract

Environmental conditions are very changeable; fluctuations in temperature, precipitation, illumination intensity, and other factors can decrease a plant productivity and crop. The remote sensing of plants under these conditions is the basis for the protection of plants and increases their survivability. This problem can be solved through measurements of plant reflectance and calculation of reflectance indices. Reflectance indices are related to the vegetation biomass, specific physiological processes, and biochemical compositions in plants; the indices can be used for both short-term and long-term plant monitoring. In our review, we considered the applications of reflectance indices in plant remote sensing. In Optical Methods and Platforms of Remote Sensing of Plants, we briefly discussed multi- and hyperspectral imaging, including descriptions of multispectral and hyperspectral cameras with different principles and their efficiency for the remote sensing of plants. In Main Reflectance Indices, we described the main reflectance indices, including vegetation, water, and pigment reflectance indices, as well as the photochemical reflectance index and its modifications. We focused on the relationships of leaf reflectance and reflectance indices to plant biomass, development, and physiological and biochemical characteristics. In Problems of Measurement and Analysis of Reflectance Indices, we discussed the methods of the correction of the reflectance indices that can be used for decreasing the influence of environmental conditions (mainly illumination, air, and soil) and plant characteristics (orientation of leaves, their thickness, and others) on their measurements and the analysis of the plant remote sensing. Additionally, the variability of plants was also considered as an important factor that influences the results of measurement and analysis.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3