Research on a Blue–Green LED Communication System Based on an Underwater Mobile Robot

Author:

Shen Tianhao1,Guo Junfang1,Liang Hexi2,Li Yanlong3,Li Kaiwen3,Dai Yonghong4,Ai Yong45

Affiliation:

1. School of Information Engineering, Wuhan Huaxia Institute of Technology, Wuhan 430223, China

2. School of Computer and Information Engineering, Hubei Normal University, Huangshi 435002, China

3. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China

4. School of Electronic Information, Wuhan University, Wuhan 430072, China

5. Optical Communicaion Equipment Research and Development Department Wuhan Liubo Optoelectronic Technology Co., Ltd., Wuhan 430072, China

Abstract

Underwater robots have been widely used in ocean exploration, deep-sea observation, seabed operations, marine scientific research, and other fields. Underwater low-latency, efficient, and safe communication modes are key to realizing the application of an underwater robot data transmission system. This paper mainly studies the optical communication between underwater mobile robots, including the large-dispersion-angle light-emitting diode (LED) design, large field of view receiving technology, weak light detector technology, etc. By designing a 120° large divergence angle underwater optical communication system in this study, the receiving field-of-view angle of the receiving end can reach 60°, which is suitable for the optical communication system of an underwater mobile platform. The high-power LED driver circuit is designed to drive the high-power LED and adopt weak light detection technology to ensure its stability and reliability. The experimental results show that, in the case of incomplete alignment between the transmitter and receiver, stable communication of underwater robots in motion is achieved through the design of a large divergence angle and a receiving field-of-view angle and the use of an underwater weak light detection technology. The communication distance is 30 m, and the communication rate remains above 10 Mbps. The information transmission content can include network data transmission, real-time video, high-definition video, high-definition images, and other data types. This equipment provides a solution for cableless data transmission of remotely operated vehicles (ROVs) and substantially enhances the application field of ROVs.

Funder

National Key R&D Program of China

Hubei Natural Science Foundation of China

Hubei Province Science and Technology Department Project of China

Wuhan Huaxia Institute of Technology Research Fund Key Project

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3