Exploring Data Augmentation and Dimension Reduction Opportunities for Predicting the Bandgap of Inorganic Perovskite through Anion Site Optimization

Author:

Nguyen Tri-Chan-Hung1ORCID,Kim Young-Un1,Jung Insung2,Yang O-Bong12,Akhtar Mohammad Shaheer123ORCID

Affiliation:

1. Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju 54896, Republic of Korea

2. New & Renewable Energy Material Development Center (NewREC), Jeonbuk National University, Jeonju 56332, Republic of Korea

3. Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea

Abstract

Significant focus has been directed towards inorganic perovskite solar cells because of their notable capabilities in converting sunlight to electricity effectively, their efficient light absorption, and their suitability for conventional semiconductor manufacturing methods. The identification of the composition of perovskite materials is an ongoing challenge to achieve high performing solar cells. Conventional methods of trial and error frequently prove insufficient, especially when confronted with a multitude of potential candidates. In response to this challenge, the suggestion is to employ a machine-learning strategy for more precise and efficient prediction of the characteristics of new inorganic perovskite materials. This work utilized a dataset sourced from the Materials Project database, consisting of 1528 ABX3 materials with varying halide elements (X = F, Cl, Br, Se) and information regarding their bandgap characteristics, including whether they are direct or indirect. By leveraging data augmentation and machine learning (ML) techniques along with a collection of established bandgap values and structural attributes, our proposed model can accurately and rapidly predict the bandgap of novel materials, while also identifying the key elements that contribute to this property. This information can be used to guide the discovery of new organic perovskite materials with desirable properties. Six different machine learning algorithms, including Logistic Regression (LR), Multi-layer Perceptron (MLP), Decision Tree (DT), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), were used to predict the direct bandgap of potential perovskite materials for this study. RF yielded the best experimental outcomes according to the following metrics: F1-score, Recall, and Precision, attaining scores of 86%, 85%, and 86%, respectively. This result demonstrates that ML has great potential in accelerating organic perovskites material discovery.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3