Abstract
We propose a generalized supervised learning algorithm for multilayer photonic spiking neural networks (SNNs) by combining the spike-timing dependent plasticity (STDP) rule and the gradient descent mechanism. A vertical-cavity surface-emitting laser with an embedded saturable absorber (VCSEL-SA) is employed as a photonic leaky-integrate-and-fire (LIF) neuron. The temporal coding strategy is employed to transform information into the precise firing time. With the modified supervised learning algorithm, the trained multilayer photonic SNN successfully solves the XOR problem and performs well on the Iris and Wisconsin breast cancer datasets. This indicates that a generalized supervised learning algorithm is realized for multilayer photonic SNN. In addition, network optimization is performed by considering different network sizes.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献