PDT-Induced Variations of Radachlorin Fluorescence Lifetime in Living Cells In Vitro

Author:

Belashov Andrey V.1ORCID,Zhikhoreva Anna A.1ORCID,Salova Anna V.2,Belyaeva Tatiana N.2ORCID,Litvinov Ilia K.2ORCID,Kornilova Elena S.2,Semenova Irina V.1

Affiliation:

1. Ioffe Institute, Russian Academy of Sciences, 26 Polytekhnicheskaya, St. Petersburg 194021, Russia

2. Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky pr., St. Petersburg 194064, Russia

Abstract

Variations in the fluorescence lifetimes of Radachlorin photosensitizers in HeLa and A549 cells, caused by photodynamic treatment, were studied using fluorescence lifetime imaging microscopy (FLIM). An analysis of FLIM images of the cells demonstrated a substantial decrease in the mean Radachlorin fluorescence lifetime and intensity as a result of UV irradiation of the photosensitized cells at different doses, with higher doses causing a more pronounced decrease in the mean fluorescence lifetime in cells. The post-treatment decrease in Radachlorin fluorescence intensity was accompanied by the appearance of an additional rapidly decaying fluorescence component and a nonlinear decrease in the weighted fluorescence lifetime obtained from double-exponential fits of time-resolved fluorescence signals. Experiments performed in the aqueous solutions of the photosensitizer revealed similar irreversible changes in the Radachlorin fluorescence lifetime and intensity. Therefore, the observed phenomena occurred most likely due to the photodegradation of the photosensitizer molecules and can be applied for dosimetry and monitoring of irradiation doses in different areas of malignant tissues in the course of photodynamic treatment.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3