The Features of the Optical Traps Formation Using Silicon Ring Gratings with Variable Height

Author:

Savelyev Dmitry A.12ORCID

Affiliation:

1. Samara National Research University, 443086 Samara, Russia

2. The Laboratory of Laser Measurement, Image Processing Systems Institute of RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia

Abstract

Features of the diffraction of Gaussian beams and Laguerre–Gaussian modes on subwavelength optical 3D microstructures with variable relief heights are calculated and studied in this paper. Silicon subwavelength ring gratings and diffraction axicons were considered as such optical microstructures. The height of individual relief elements varied. The propagation of laser light through the proposed optical elements was simulated using the finite difference time domain (FDTD) method. It was shown that it is possible to select the height of individual relief rings of ring gratings in such a way that it is possible to reduce the size of the focal spot down to 0.36 λ, form an extended light segment (up to 5.79 λ), and form optical traps.

Funder

Ministry of Science and Higher Education within the State assignment

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. T-matrix methods for electromagnetic structured beams: A commented reference database for the period 2019–2023;Journal of Quantitative Spectroscopy and Radiative Transfer;2024-08

2. An investigation into the application of neural networks for optical vertex image segmentation;2024 X International Conference on Information Technology and Nanotechnology (ITNT);2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3