Interface Engineering and Electron-Hole Wave Function Overlap of InAs/AlSb Superlattice Infrared Detectors

Author:

Yu Jing12,Zhu Lianqing12,Lu Lidan2,Chen Weiqiang2,Zheng Xiantong2,Zhang Dongliang2,Fu Yuegang1ORCID,Ou Jianzhen3ORCID

Affiliation:

1. School of Opto−Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China

2. School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China

3. School of Engineering, RMIT University, Melbourne 3000, Australia

Abstract

InAs/AlSb is a material system that can be used as a low-noise avalanche detector and operates in the short-wave infrared band. The interface parameters determine the wave function overlap (WFO). Maximizing the WFO of InAs/AlSb superlattices improves the quantum efficiency (QE) of infrared avalanche photodetectors (APDs). However, this remains a huge challenge. Here, the 8-band k·p perturbation method based on Bloch wave envelope function approximation was used to calculate the energy level structure of InAs/AlSb superlattices. The results indicate that the WFO is enhanced with increasing InSb interface thickness or when the InSb (or AlAs) interface is far from the intersection of InAs and AlSb. As the AlAs interface thickness increases, the WFO enhances and then reduces. The maximum increase in WFO is 15.7%, 93%, and 156.8%, respectively, with three different models. Based on the stress equilibrium condition, we consider the interface engineering scheme proposed for enhancing WFO with an increase of 16%, 114%, and 159.5%, respectively. Moreover, the absorption wavelength shift is less than ±0.1 μm. Therefore, the interface layer thickness and position can be designed to enhance the WFO without sacrificing other properties, thereby improving the QE of the device. It provides a new idea for the material epitaxy of APDs.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3