Systematic Performance Analysis of Hybrid FSO/RF System over Generalized Fading Channels with Pointing Errors

Author:

Wu YanORCID,Jiang Mengwan,Li Gang,Kong DejinORCID

Abstract

Hybrid free space optical (FSO)/radio frequency (RF) system has attracted extensive attention because of its advantages of both the FSO and RF links. From the viewpoint of overall system performance, this paper presents a systematic analysis method of communication performance and security performance of the hybrid FSO/RF system with the Málaga turbulence channel and the α−μ fading channel. The hybrid FSO/RF system adopts the diversity method of maximum ratio combining (MRC) to receive signals. The new expressions of communication performance parameters (i.e., the bit error rate, the outage probability, the ergodic channel capacity) of the only FSO system and the hybrid system are obtained. Then, the new expressions of the security performance parameters (i.e., the security outage probability and the strictly positive secrecy capacity) of the hybrid system with the FSO or RF links eavesdropping are derived, respectively. Our derived analytical expressions present an efficient tool to investigate the impact of system parameters on the overall performance of the hybrid system, namely modulation scheme, turbulence intensity, pointing errors, target rate, and eavesdropper output signal-to-noise ratio. The simulation results show that compared with the only FSO system, the hybrid system can significantly improve the communication performance of the system; the communication performance of the hybrid system using coherent binary phase shift keying (CBPSK) modulation is obviously better than the other two modulation technologies; with the deterioration of atmospheric environment (increasing turbulence intensity and pointing errors), the communication performance and security performance of the hybrid system will decline; both RF link eavesdropping and FSO link eavesdropping have a greater impact on the security performance of the hybrid systems; whether it is FSO link eavesdropping or RF link eavesdropping, the reduction of target rate and output signal-to-noise ratio of the eavesdropper can improve the security performance of the hybrid system.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3