Abstract
The inherent impairments of visible light communication (VLC) in terms of nonlinearity of light-emitting diode (LED) and the optical multipath restrict bit error rate (BER) performance. In this paper, a model-driven deep learning (DL) equalization scheme is proposed to deal with the severe channel impairments. By imitating the block-by-block signal processing block in orthogonal frequency division multiplexing (OFDM) communication, the proposed scheme employs two subnets to replace the signal demodulation module in traditional system for learning the channel nonlinearity and the symbol de-mapping relationship from the training data. In addition, the conventional solution and algorithm are also incorporated into the system architecture to accelerate the convergence speed. After an efficient training, the distorted symbols can be implicitly equalized into the binary bits directly. The results demonstrate that the proposed scheme can address the overall channel impairments efficiently and can recover the original symbols with better BER performance. Moreover, it can still work robustly when the system is complicated by serious distortions and interference, which demonstrates the superiority and validity of the proposed scheme in channel equalization.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
China Postdoctoral Science Foundation
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献