Effect of Small Angle Misalignments on Ocular Wavefront Zernike Coefficients

Author:

Safarian Baloujeh Ebrahim12ORCID,Ávila Francisco J.2ORCID,González-Méijome José M.3ORCID

Affiliation:

1. Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC), 50009 Zaragoza, Spain

2. Departamento de Física Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain

3. Clinical and Experimental Optometry Research Laboratory (CEORLab), Department and Center of Physics—Optometry and Vision Science, School of Science, 4710-057 Braga, Portugal

Abstract

Purpose: To assess the possible impact of minor changes in fixation on wavefront measurements as a potential constraint in detecting subtle temporal variations in ocular wavefront error. Methods: Twelve healthy subjects with an average age of 36.3 ± 8.8 were instructed to put their heads in the aberrometer’s chin-rest and look at a fixation target that was embedded in the device. The fixation targets were readily observable to the participants without accommodation, thanks to the aberrometer’s Badal system. When each eye was staring at the target, its wavefront aberration was recorded three times and then averaged for further analysis. The averaged Zernike coefficients were rescaled to the smallest value of the maximum round pupil found among all eyes (4.41 mm), and this procedure was repeated for each target. Results: Alteration of the fixation targets caused changes to the Zernike coefficients of defocus (C(2,0)), vertical trefoil (C(3,–3)), vertical coma (C(3,–1)), horizontal coma (C(3,1)), oblique trefoil (C(3,3)), primary spherical aberration (C(4,0)), and secondary spherical aberration (C(6,0)), but the changes were not statistically significant. Nevertheless, an alteration in the target’s size and shape exhibited a significant correlation across all of the aforementioned coefficients in both eyes (p < 0.05). The total RMS of aberrations and the RMS of the spherical-like aberrations were both lowest while choosing the larger Maltese cross, and the bigger E-letter minimized the RMS of HOA and comatic aberrations. Conclusion: The aberrometric changes occur as a consequence of altering the fixational gaze and are within the range of the changes found after performing a near-vision task, so they might potentially act as a confounding factor when attempting to identify such small variations in the ocular wavefront. Using a smaller E-letter (5 arcmin) as an internal fixation target resulted in the least standard deviation of measurements, fixational stability, and higher accuracy in ocular wavefront measurements.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3