Infrared Gas Detection and Concentration Inversion Based on Dual-Temperature Background Points

Author:

Wu Sipeng123,Zhong Xing34ORCID,Qu Zheng123,Wang Yuanhang123,Li Lei123,Zeng Chaoli35

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Chang Guang Satellite Technology Co., Ltd., Changchun 130102, China

4. Key Laboratory of Advanced Technology for Aerospace Vehicles of Liaoning Province, Dalian University of Technology, Dalian 116024, China

5. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Abstract

Gas detection based on infrared thermal imaging is applied in many areas, but it is generally applied as a qualitative detection method to observe the target area; on the other hand, quantitative research on gas concentration is less common, the measurement accuracy is poor, and the calculation method of concentration in the commonly adopted transmission model is also complicated. In this paper, based on the radiance transfer model of gas infrared imaging technology, the influence of gas concentration, gas temperature, and background temperature on gas imaging detection is investigated, a gas detection and concentration inversion method based on dual-temperature background points is proposed, and the effects of the choice of reference band on background temperature correction are analyzed in relation to the changing trend of dual-band radiance difference. To verify the effectiveness of this method, a gas detection system with dual-temperature background spots was constructed in this paper utilizing a cooled mid-wave infrared focal plane detector plus a reference filter and a measurement filter, which achieved a promising concentration accuracy of less than 10% for carbon dioxide at a detectable range. Meanwhile, an infrared imaging system with a noise equivalent temperature difference (NETD) of 40 mK was employed to simulate the detection of methane, which enables the detection and concentration inversion of methane gas at a minimum concentration of 500 ppm·m at a distance of 1 km, which proves the capability of long-range detection.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3