Validation of a White Light and Fluorescence Augmented Panoramic Endoscopic Imaging System on a Bimodal Bladder Wall Experimental Model

Author:

Moskalev Arkadii1,Kalyagina Nina12ORCID,Kozlikina Elizaveta34ORCID,Kustov Daniil1ORCID,Loshchenov Maxim2,Amouroux Marine5,Daul Christian5ORCID,Blondel Walter5ORCID

Affiliation:

1. Natural Scienses Center, Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia

2. Department of Laser Micro-Nano and Biotechnologies, National Research Nuclear University MEPhI, 115409 Moscow, Russia

3. Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 121205 Moscow, Russia

4. Technobiomed, Laboratory of Photodynamic Therapy, Federal State Budgetary Educational Institution of Higher Education “Russian University of Medicine” of the Ministry of Health of the Russian Federation, 127006 Moscow, Russia

5. CRAN, UMR 7039, CNRS and Université de Lorraine, 54516 Vandœuvre-Lès-Nancy, France

Abstract

Background: Fluorescence visualization of pathologies, primarily neoplasms in human internal cavities, is one of the most popular forms of diagnostics during endoscopic examination in medical practice. Currently, visualization can be performed in the augmented reality mode, which allows to observe areas of increased fluorescence directly on top of a usual color image. Another no less informative form of endoscopic visualization in the future can be mapping (creating a mosaic) of the acquired image sequence into a single map covering the area under study. The originality of the present contribution lies in the development of a new 3D bimodal experimental bladder model and its validation as an appropriate phantom for testing the combination of bimodal cystoscopy and image mosaicking. Methods: An original 3D real bladder-based phantom (physical model) including cancer-like fluorescent foci was developed and used to validate the combination of (i) a simultaneous white light and fluorescence cystoscopy imager with augmented reality mode and (ii) an image mosaicking algorithm superimposing both information. Results: Simultaneous registration and real-time visualization of a color image as a reference and a black-and-white fluorescence image with an overlay of the two images was made possible. The panoramic image build allowed to precisely visualize the relative location of the five fluorescent foci along the trajectory of the endoscope tip. Conclusions: The method has broad prospects and opportunities for further developments in bimodal endoscopy instrumentation and automatic image mosaicking.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3