Design of Machine Learning-Based Algorithms for Virtualized Diagnostic on SPARC_LAB Accelerator

Author:

Latini Giulia1ORCID,Chiadroni Enrica2ORCID,Mostacci Andrea2ORCID,Martinelli Valentina3,Serenellini Beatrice1ORCID,Silvi Gilles Jacopo2ORCID,Pioli Stefano1ORCID

Affiliation:

1. INFN-Latoratori Nazionali di Frascati, Via Enrico Fermi, 54, 00044 Frascati, Italy

2. SBAI Department, Università La Sapienza di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy

3. INFN-Laboratori Nazionali di Legnaro, Viale dell’Università, 2, 35020 Legnaro, Italy

Abstract

Machine learning deals with creating algorithms capable of learning from the provided data. These systems have a wide range of applications and can also be a valuable tool for scientific research, which in recent years has been focused on finding new diagnostic techniques for particle accelerator beams. In this context, SPARC_LAB is a facility located at the Frascati National Laboratories of INFN, where the progress of beam diagnostics is one of the main developments of the entire project. With this in mind, we aim to present the design of two neural networks aimed at predicting the spot size of the electron beam of the plasma-based accelerator at SPARC_LAB, which powers an undulator for the generation of an X-ray free electron laser (XFEL). Data-driven algorithms use two different data preprocessing techniques, namely an autoencoder neural network and PCA. With both approaches, the predicted measurements can be obtained with an acceptable margin of error and most importantly without activating the accelerator, thus saving time, even compared to a simulator that can produce the same result but much more slowly. The goal is to lay the groundwork for creating a digital twin of linac and conducting virtualized diagnostics using an innovative approach.

Publisher

MDPI AG

Reference12 articles.

1. SPARC_LAB present and future;Ferrario;Nucl. Instrum. Methods Phys. Res. B,2013

2. Focusing properties of linear undulators;Quattromini;Phys. Rev. Accel. Beams,2012

3. Ferrario, M., Assmann, R.W., Avaldi, L., Bolognesi, P., Catalano, R., Cianchi, A., Cirrone, P., Falone, A., Ferro, T., and Gizzi, L. (2024, March 12). EuPRAXIA Advanced Photon Sources PNRR_EuAPS Project. Available online: https://www.lnf.infn.it/sis/preprint/getfilepdf.php?filename=INFN-23-12-LNF.pdf.

4. Chiadroni, E., Biagioni, A., Alesini, D., Anania, M.P., Bellaveglia, M., BIsesto, F., Brentegani, E., Cardelli, F., Cianchi, A., and Costa, G. (May, January 29). Status of Plasma-Based Experiments at the SPARC_LAB Test Facility. Proceedings of the IPAC2018—9th International Particle Accelerator Conference, Vancouver, BC, Canada.

5. The SPARC linear accelerator based terahertz source;Chiadroni;Appl. Phys. Lett.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3