Analog–Digital Combined High-Secure Optical Communication System Based on Chaotic Circuit Driving

Author:

Zhong Qing,Liu Bo,Ren Jianxin,Jiang Yicheng,Ullah RahatORCID,Guo Zhiruo,Mao Yaya,Wu Xiangyu,Wu Yongfeng,Zhao Lilong,Sun Tingting

Abstract

We propose and demonstrate a new analog–digital combined high-secure optical communication system based on chaotic circuit driving, which achieves encryption in the analog and digital domains. A 3D chaotic system is used for analog domain phase encryption (ADPE) and digital domain time–frequency encryption (DDTFE) simultaneously. The ADPE is carried out by the privately chaotic signal driving the phase modulator (PM), which realizes chaotic phase encryption. The chaotic circuit comprehends highly complex nonlinear dynamics. Its size is 10 cm × 5 cm, which has the characteristics of small size and low cost. The DDTFE is performed by the frequency–time encryption of signals in the digital domain. The experimental results show that the optical physical layer encryption scheme based on analog and digital combination can successfully mask the original data. The driving signal of PM is that generated by the chaotic circuit and needs to be privately synchronized, so that the legal receiver may accurately decrypt the encrypted data and the eavesdropper is unable to intercept a valuable message. If the chaotic driving circuit produces a delay of 3 s, the bit error rate (BER) reaches more than 0.3 at the receiver. The results of experiment verify that the scheme can transmit 13.3 Gb/s 16 quadrature amplitude modulation orthogonal frequency division multiplexing (16QAM-OFDM) signal over 25 km standard single mode fiber (SSMF). This scheme achieves low-cost, high-security communication, making it a suitable foundation for high-speed, secure optical communication at the physical layer.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3