Experimental Study of Transverse Trapping Forces of an Optothermal Trap Close to an Absorbing Reflective Film

Author:

Wang Hao-Dong,Bai Wen,Zhang Bu,Li Bo-Wei,Ji Feng,Zhong Min-ChengORCID

Abstract

The optothermal manipulation of micro-objects is significant for understanding and exploring the unknown in the microscale word, which has found many applications in colloidal science and life science. In this work, we study the transverse forces of an optothermal trap in front of a gold film, which is an absorbing reflective surface for the incident laser beam. It is demonstrated that optothermal forces can be divided into two parts: optical force of a standing-wave trap, and thermal force of a thermal trap. The optical force of the standing-wave trap can be obtained by measuring the optical trapping force close to a non-absorbing film with same reflectance. The thermal force can be obtained by subtracting the optical force of the standing-wave trap from the total trapping force of the optothermal trap close to the gold film. The results show that both optical and thermal trapping forces increase with laser power increasing. The optical trapping force is larger than the thermal trapping force, which is composed of convective drag force and thermophoretic force. Further experiment is run to study the composition of thermal force. The result shows that the convective flow is generated later than the thermophoretic flow. The results proposed here are useful for enabling users to optimize optothermal manipulation method for future applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3