Design and Characterization of a Portable Multiprobe High-Resolution System (PMHRS) for Enhanced Inversion of Water Remote Sensing Reflectance with Surface Glint Removal

Author:

Liu Shuangkui12,Jiang Ye1,Wang Kai1,Zhang Yachao1,Wang Zhe12,Liu Xu12,Yan Shiyu3,Ye Xin1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. College of Surveying, Mapping and Geographic Sciences, Liaoning Technical University, Fuxin 123032, China

Abstract

Surface glint significantly reduces the measurement accuracy of remote sensing reflectance of water, Rrs, making it difficult to effectively use field measurements for studying water optical properties, accurately retrieving water quality parameters, and validating satellite remote sensing products. To accurately assess the effectiveness of various glint removal methods and enhance the accuracy of water reflectance measurements, a portable multiprobe high-resolution System (PMHRS) is designed. The system is composed of a spectrometer, fiber bundles, an irradiance probe, and three radiance probes. The reliability and measurement accuracy of the PMHRS are ensured through rigorous laboratory radiometric calibration and temperature correction. The comprehensive uncertainty of laboratory calibration ranges from 1.29% to 1.43% for irradiance calibration and from 1.47% to 1.59% for radiance calibration. Field measurement results show a strong correlation with both synchronous ASD data, and Sen2Cor-atmospherically corrected Sentinel-2B data (R2 = 0.949, RMSE = 0.013; R2 = 0.926, RMSE = 0.0105). The water-leaving radiance measurements obtained under different solar elevation angles using three methods (M99 method, polarization method, and SBA) demonstrate that the improved narrow field-of-view polarization probe effectively removes surface glint across various solar elevation angles (with overall better performance than the traditional M99 method). At a solar elevation angle of 69.7°, the MAPD and MAD between the measurements of this method and those of the SBA are 5.8% and 1.4 × 10−4, respectively. The results demonstrate that the PMHRS system outperforms traditional methods in sun glint removal, significantly enhancing the accuracy of water remote sensing reflectance measurements and improving the validation quality of satellite data. This work provides a crucial technical foundation for the development of high-resolution continuous observation platforms in complex aquatic environments. It holds significant implications for improving the accuracy of field-based water remote sensing reflectance measurements and for enhancing the quality of water ecological monitoring data and satellite validation data.

Funder

National Key Research and Development Plan Project of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3