Abstract
In a recent paper, we have reported the results of a study of the nonlinear light propagation of a beam traveling along the helix direction of a heliconical cholesteric liquid crystal, showing that optical reorientation leads to instabilities in the optical transmission when the light wavelength is close to the Bragg resonance. Here we report a detailed study of this phenomenon, using Ambartsumian’s layer addition modified method to take into account the continuous modification of the wave field during propagation. We show that the whole transmission spectrum is modified by increasing the light intensity and point out that self-induced oscillations take place at lower intensities on the red side edge of the Bragg resonance while stable values of transmittivity are still observed on the blue side edge. A further increase in the intensity leads to oscillations of lower amplitude on the blue side while an irregular behavior of the transmission is achieved on the red side. At higher intensities, the Bragg resonance disappears and transmission becomes unstable for any light wavelength. A simple phenomenological model is proposed to account for the onset of the oscillations and the asymmetry of the behavior at the opposite side of the Bragg resonance. We also point out that the static electric field is a driving parameter to switch from stable to oscillatory to irregular behavior in the transmittivity at a given light wavelength.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献