Humidity Sensing Using a Multimode Fiber Ring Laser with Thermal Compensation

Author:

Ma Shaonian12,Ji Qiang12,Zhao Xian12,Qin Zengguang23,Liu Zhaojun23,Xu Yanping12ORCID

Affiliation:

1. Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China

2. Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China

3. School of Information Science and Engineering, Shandong University, Qingdao 266237, China

Abstract

We propose a multimode fiber laser sensor utilizing PI-SMF (polyimide-coated single mode fiber) for low-error relative humidity (RH) measurement, which is temperature compensated based on FBG. The PI-SMF in the laser cavity is used as a sensing element, and its length varies with humidity and temperature by volume-variation induced strain, which leads to frequency shift of the longitudinal mode beat frequency signal (BFS). When the 2000 MHz BFS is selected as the sensing signal, a RH sensitivity of −2.68 kHz/%RH and a temperature sensitivity of −14.05 kHz/°C are achieved. The peak shift of the FBG-based laser emission spectrum is only sensitive to temperature rather than RH with a temperature sensitivity of 9.95 pm/°C, which is used as the temperature compensation for RH measurements. By monitoring the response of the BFS and the laser wavelength, the cross-sensitivity effect of RH and temperature is overcome, and low-error RH measurement in the temperature range of 20 to 65 °C is realized with errors within ±0.67 %RH (25 to 85 %RH). The scheme does not require the design and production of complex structures and hygroscopic material coating processes, owning the advantages of simple structure, easy operation and high accuracy, and is expected to be practically applied in food safety and environmental monitoring.

Funder

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Qilu Young Scholar Program of Shandong University

the National Grant Program for High-level Returning Oversea Talents

Shandong Higher School Youth Innovation Team Technology Program

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3