Prediction of Surface Roughness in Functional Laser Surface Texturing Utilizing Machine Learning

Author:

Steege Tobias1,Bernard Gaëtan2ORCID,Darm Paul1,Kunze Tim13,Lasagni Andrés Fabián14ORCID

Affiliation:

1. Fraunhofer-Institute for Material and Beam Technology IWS, Winterbergstr. 28, 01277 Dresden, Germany

2. GF Machining Solutions—Geneva, Rue du Pré-de-la-Fontaine 8, 1217 Meyrin, Switzerland

3. Fusion Bionic GmbH, Löbtauer Str. 69, 01159 Dresden, Germany

4. Institute für Fertigungstechnik, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden, Germany

Abstract

Functional laser surface texturing (LST) arose in recent years as a very powerful tool for tailoring the surface properties of parts and components to their later application. As a result, self-cleaning surfaces with an improved wettability, efficient engine components with optimized tribological properties, and functional implants with increased biocompatibility can be achieved today. However, with increasing capabilities in functional LST, the prediction of resulting surface properties becomes more and more important in order to reduce the development time of those functionalities. Consequently, advanced approaches for the prediction of the properties of laser-processed surfaces—the so-called predictive modelling—are required. This work introduces the concept of predictive modelling with respect to LST by means of direct laser writing (DLW). Fundamental concepts for the prediction of surface properties are presented employing machine learning approaches, theoretical concepts, and statistical methods. The modelling takes into consideration the used laser parameters, the analysis of topographical, and other process-relevant information in order to predict the resulting surface roughness. For this purpose, two different algorithms, namely artificial neural network and random forest, were trained with experimental data for stainless steel and Stavax surfaces. Statistical results indicate that both models can predict the desired surface topography with high accuracy, despite the use of a small dataset for the training process. The approaches can be used to further optimize the laser process regarding the process efficiency, overall throughput, and other process outcomes.

Funder

European Union’ s Horizon 2020 Framework Program

German Research Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3