Compressive Coded Rotating Mirror Camera for High-Speed Imaging

Author:

Matin AmirORCID,Wang XuORCID

Abstract

We develop a novel compressive coded rotating mirror (CCRM) camera to capture events at high frame rates in passive mode with a compact instrument design at a fraction of the cost compared to other high-speed imaging cameras. Operation of the CCRM camera is based on amplitude optical encoding (grey scale) and a continuous frame sweep across a low-cost detector using a motorized rotating mirror system which can achieve single pixel shift between adjacent frames. Amplitude encoding and continuous frame overlapping enable the CCRM camera to achieve a high number of captured frames and high temporal resolution without making sacrifices in the spatial resolution. Two sets of dynamic scenes have been captured at up to a 120 Kfps frame rate in both monochrome and colored scales in the experimental demonstrations. The obtained heavily compressed data from the experiment are reconstructed using the optimization algorithm under the compressive sensing (CS) paradigm and the highest sequence depth of 1400 captured frames in a single exposure has been achieved with the highest compression ratio of 368 compared to other CS-based high-speed imaging technologies. Under similar conditions the CCRM camera is 700× faster than conventional rotating mirror based imaging devices and could reach a frame rate of up to 20 Gfps.

Publisher

MDPI AG

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tutorial on compressed ultrafast photography;Journal of Biomedical Optics;2024-01-30

2. 单发超快光场成像技术研究进展;Laser & Optoelectronics Progress;2024

3. Velocity measurement of moving target based on rotating mirror high speed camera;Optical Engineering;2023-10-11

4. SpinCam: High-Speed Imaging via a Rotating Point-Spread Function;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. Shuffled rolling shutter for snapshot temporal imaging;Optics Express;2022-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3