Abstract
Nowadays, underwater visible light communication (UVLC) has become one of the key technologies for high-speed underwater wireless communication. Because of the limited modulation bandwidth and nonlinearity of the optoelectronic devices in the UVLC system, the combination of inter-symbol interference and nonlinear impairment will inevitably degrade the transmission performance. Advanced digital signal processing methods including equalization and decoding are required. In the past few years, Support vector machine (SVM) has been widely investigated in quadrature amplitude modulation (QAM) for soft decision in the decoding process. However, previous works only consider 2-dimensional (2-D) separate symbol, ignoring the correlation between consecutive symbols. In this paper, we propose to use SVM for soft decision with a 4-dimensional (4-D) constellation by concatenating two consecutive symbols. To deal with the increasing computational complexity in the SVM training phase, bit-based binary SVM multi-class strategy and an edge-detection-based data pre-processing method are employed. In this paper, we demonstrate a carrierless amplitude and phase (CAP) 16-QAM UVLC system. Experimental results indicate that the performance is greatly improved when using consecutive-symbol-expanded 4-D constellation with SVM for soft decision.
Funder
National Natural Science Foundation of China
Major Key Project of PCL
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献