The Observation of High-Order Charge–Current Configurations in Plasmonic Meta-Atoms: A Numerical Approach

Author:

Gerislioglu Burak,Ahmadivand ArashORCID

Abstract

Living in a world of resonances, there have been significant progresses in the field of excitation of pronounced and multifunctional moments across a wide range of optical frequencies. Among all acknowledged resonances, the toroidal multipoles have received copious interest in recent years due to possessing inherent signatures in nature. As a fundamental member, toroidal dipole is a strongly localized electromagnetic excitation based on charge–current configurations, which can be squeezed into an extremely small spot. Although there have been extensive studies on the behavior and properties of toroidal dipoles in order to develop all-optical devices based on this technology, so far, all analyses are restricted to the first (1st) order toroidal dipoles. In this work, using a practical technique, we successfully observed exquisite multi-loop super-toroidal (MLST) spectral features in a planar multipixel metallodielectric meta-atom. Employing the theory behind the excitation of multi-loop currents, we numerically and theoretically demonstrated that a traditional toroidal dipole can be transformed into a super-toroidal moment by varying the dielectric permittivity of the capacitive gaps between proximal pixels. This understanding introduces a new approach for the excitation of complex multi-loop toroidal moments in plasmonic metamaterials with high sensitivity, applicable for various nanophotonics applications from sensing to filtering.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference28 articles.

1. Principles of Electrodynamics;Schwartz,1972

2. Toroidal Multipole Moments in Classical Electrodynamics;Nanz,2016

3. Ring currents and poloidal magnetic fields in nuclear regions of galaxies;Lesch;Astron. Astrophys.,1989

4. Electromagnetic toroidal excitations in matter and free space

5. Toroidal Dipolar Response in a Metamaterial

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3