Range-Gated LIDAR Utilizing a LiNbO3 (LN) Crystal as an Optical Switch

Author:

Luan Chenglong1,Li Yingchun2,Guo Huichao2,Sun Houpeng1

Affiliation:

1. Graduate School, Space Engineering University, Beijing 101416, China

2. Department of Electronic and Optical Engineering, Space Engineering University, Beijing 101416, China

Abstract

In this paper, a range-gated LIDAR system utilizing an LN crystal as the electro-optical switch and a SCMOS (scientific complementary metal oxide semiconductor) imaging device is designed. To achieve range-gated operations, we utilize two polarizers and an LN (LiNbO3) crystal to form an electro-optical switch. The optical switch is realized by applying a pulse voltage at both ends of the crystal due to the crystal’s conoscopic interference effect and electro-optical effect. The advantage of this system is that low-bandwidth detectors, such as a CMOS and a CCD (charge-coupled device), can be used to replace conventional high-bandwidth detectors, such as an ICCD (intensified charge-coupled device), and it displays better imaging performance under specific conditions at the same time. However, after using an electro-optical crystal as an optical switch, a new inhomogeneity error will be introduced due to the conoscopic interference effect of the electro-optical crystal, resulting in a range error for the LIDAR system. To reduce the influence of inhomogeneity error on the system, this paper analyzes the sources of inhomogeneity error caused by the electro-optical crystal and calculates the crystal’s inhomogeneity mathematical expression. A compensation method is proposed based on the above inhomogeneity mathematical expression. An experimental LIDAR system is constructed in this paper to verify the validity of the compensation method. The experimental results of the range-gated LIDAR system show that in a specific field of view (2.6 mrad), the LIDAR system has good imaging performance; its ranging standard deviation is 3.86 cm and further decreases to 2.86 cm after compensation, which verifies the accuracy of the compensation method.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3