Experimental Study on Hydraulic Fracture Initiation and Propagation in Hydrated Shale

Author:

Duan Guifu,Mou Jianye,Zou Yushi,Gao BudongORCID,Yang Lin,He Yufei

Abstract

Shale reservoirs contain a certain amount of clay minerals, which can hydrate through imbibition when in contact with various water-based fluids during drilling and completion. Shale hydration can lead to structural changes in the shale such as the expansion of bedding planes and propagation of microfractures, consequently affecting the initiation and propagation of hydraulic fractures. However, the effect of shale hydration under confining pressure on hydraulic fracture propagation and stimulation effect is still unclear. To this end, a novel experimental method integrating shale hydration and hydraulic fracturing was proposed based on the laboratory triaxial hydraulic fracturing simulation system. This method enables a more realistic simulation of shale hydration and hydraulic fracturing process happening in downhole conditions. The experimental results show that under simulated reservoir conditions, water imbibition increases over time with the imbibition rate reaching its peak within 24 h. The breakdown pressure, number of fractures, and complexity of fractures are positively correlated with imbibition time. The increase in fracture complexity could be attributed to the increase in the number of fractures. In contrast, imbibition pressure (injection pressure for imbibition) has little influence on water imbibition. For specimens under different imbibition pressure, the breakdown pressure and the number of fractures are close, and the complexity of fractures does not change prominently; all are T-shaped fractures. It is believed that the closure of microfractures under confining pressure caused by hydration is the main reason for the increase in breakdown pressure. Higher breakdown pressure means higher net pressure in the wellbore, which facilitates fracture initiation where the breakdown pressure is higher. Therefore, shale hydration is conducive to the initiation of multiple fractures, thus increasing the number and complexity of fractures.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference25 articles.

1. Progress and prospects of shale gas exploration and development in China;Dong;Acta Pet. Sin.,2012

2. Water adsorption on kaolinite and illite after polyamine adsorption

3. Study on macro-microscopic characteristics of longmaxi shale hydration process;Zhang;Drill. Prod. Technol.,2022

4. Hydration experiment of hard brittle shale of the longmaxi formation;Liu;J. Southwest Pet. Univ. (Sci. Technol. Ed.),2016

5. Evaluation of Gas Saturation During Water Imbibition Experiments

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3