Abstract
The ceramic industry is one of the pillars of the Brazilian economy, characterized by making low-cost products and an obsolete manufacturing process from a technological point of view. Among the various stages of production of ceramic materials, drying is one of the most energy-consuming and, in general, causes structural damage to the product, compromising its mechanical performance and final quality. Despite the relevance, studies on the drying of ceramic materials are mostly conducted at the experimental level and limited to some specific operational conditions. In this scenario, this research aims to theoretically study the heat and mass transfers in industrial ceramic blocks during drying. Based on the lumped analysis method, and considering the dimensional variations of the material, new phenomenological mathematical models and their respective analytical solutions are proposed to describe the kinetics of mass loss and heating of the material. The predicted results referring to the thermal and gravimetric behavior of the block during the oven drying process under different conditions are compared with the experimental data, obtaining excellent agreement between the results. Furthermore, the transport coefficients were estimated, proving the dependence of these parameters on the drying air conditions. The convective mass transfer coefficient ranged from 6.69 × 10–7 to 15.97 × 10–7 m/s on the outer surface of the block and from 0.70 × 10–7 to 1.03 × 10–7 m/s on the inner surface of the material when the drying air temperature ranged from 50 to 100 °C. The convective heat transfer coefficient ranged from 4.79 to 2.04 W/(m2.°C) on the outer surface of the block and from 1.00 to 0.94 W/(m2.°C) on the inner surface of the material when air temperature ranged from 50 to 100 °C.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference32 articles.
1. Development of Ceramic Masses for Sanitary Stoneware Using Flat Glass Residue as a Flux in Partial Replacement of Feldspar;Cavalcanti;Ph.D. Thesis,2010
2. Ceramic raw materials. Part I: The profile of the main ceramic industries and their products;Motta;Cerâm. Ind.,2021
3. The origins of the ceramic industry in São Paulo;Bellingieri;Cerâm. Ind.,2005
4. Simulation and Experimentation of the Drying of Red Ceramics in Industrial Thermal Systems;Almeida;Ph.D. Thesis,2009
5. Panorama da Indústria Cerâmica Brasileira na Última Década