Optimization of Potassium Promoted Molybdenum Carbide Catalyst for the Low Temperature Reverse Water Gas Shift Reaction

Author:

Morse James R.ORCID,Holder Cameron F.,Baldwin Jeffrey W.,Willauer Heather D.

Abstract

The reduction of CO2 to CO through the reverse water gas shift (RWGS) reaction is an important catalytic step in the overall strategy of CO2 utilization. The product CO can be subsequently used as a feedstock for a variety of useful reactions, including the synthesis of fuels through the Fischer–Tropsch process. Recent works have demonstrated that potassium-promoted molybdenum carbide (K-Mo2C) is a highly selective catalyst for low-temperature RWGS. In this work, we describe the systematic investigation of key parameters in the synthesis of K-Mo2C, and their influence on the overall activity and selectivity for the low-temperature RWGS reaction. Specifically, we demonstrate how catalyst support, precursor calcination, catalyst loading, and long-term ambient storage influence performance of the K-Mo2C catalyst.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference67 articles.

1. Operational Energy Strategy http://www.acq.osd.mil/eie/Downloads/OE/2016%20DoD%20Operational%20Energy%20Strategy%20WEBc.pdf

2. Summary of the 2018 National Defense Strategy of the United States of America

3. S.1790—116th Congress (2019–2020): National Defense Authorization Act for Fiscal Year 2020. 20 December 2019

4. Influence of Gas Feed Composition and Pressure on the Catalytic Conversion of CO2to Hydrocarbons Using a Traditional Cobalt-Based Fischer−Tropsch Catalyst

5. Effects of Pressure on the Recovery of CO2 by Phase Transition from a Seawater System by Means of Multilayer Gas Permeable Membranes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3